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Absiract. The enerpy spectrum and the eigenvectors of a charged particle in a uniform
electric field with alternating site enerpgies are studied for infinite systems. For the case of
large energy mismatch, exact solutions are presented by using perturbation theory, from
which it is found that the spectrum is that of two interspaced Stark ladders, The character of
these Stark laddersis that the difference of the ratio of the enerpy and the field between two
energies on a same rung is an even number,

1. Introduction

This paper addresses the energy spectrum and the eigenvectors of a charged particle
hopping on an infinite linear chain under the action of a uniform electric field in the
direction of the chain, and with the approximation of nearest-neighbour intersite overlap
integrals V. The character of this model is such that the site energies alternate between,
the values £ = 2A (A > 0). Such a system is relevant to a variety of fields, including that
of exciton states in molecular crystals [1, 2], electron localization in superlattices [3, 4],
and the localized properties of excitations in ferroelectric materials [5-7)]. The Hamil-
tonian considered here is thus

H=2A3 (1" |m¥m) + VX (Jm¥m + 1| + |m + 1Xm|) ~ eEga S, m|m¥m|
(2.1)

where [ m) represents a Wannier state localized on lattice site m, e is the charge on the
particle, a is the lattice constant, and E; is the external electric field. Here, V has been
assumed to be positive for simplicity, and the off-diagonal elements of the position
operator X in the Wannier basis have been neglected, i.e., we have assumed that

r dx j T AX (| XXX eEoR| X XX [n) = eEqamd,, . (1.2)
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Equation {1.1) can be rewritten as.
H=H;+H, (1.3)
Hy =28 2 (=1)"|m)m| + V2 (|m)m + 1| + |m + 1¥m|)  (1.4)

H, = —eEqya > m|mm). (1.5)

Here, H, is the field-free Hamiltonian, whose probability self-propagators have been
studied by Kovanis and Kenkre [8]. When the external field is present this model, in
general, cannot be solved analytically. However, we find, for the case when the chain
disturbance is large, i.e. for A > V, the problem can be solved exactly by using per-
turbation theory (pT). In this paper, we only consider this case.

The rest of this paper is set out as follows. In section 2, we present our solutions to
H,in k-space. Then, by expressing the eigenvectors to (1.3) as a linear superposition of
the field-free eigenvectors, the exact results for the energy spectrum and the eigenvectors
are obtained by using PT (section 3), from which it is found that the spectrum is that of
two interspaced Stark ladders. Finally, concluding remarks are given in section 4.

2. Explicit solutions for the field-free system in k space

By expressing the eigenvector | @) of H; as a linear superposition of Wannier states | m),

|9} = 2 Cplm) 2.1)
one obtains the following equations for the amplitudes C,, as

€oCom = 2AC, + V(Copuy + Canmy) (2.2)

EoCams1 = ~2AC4y + V(Consy + Cop) (2.3)
where € is the energy belonging to . These equations can be diagonalized by setting

Ca = f (k) ¥ Osk<2r (2.4)

Com+r = glk) e O0<k<2n (2.5)
where k is the (dimensionless) wavevector, We get

(By — 2A)f(k) — 2V e~ cos(k/2)g(k) = 0 (2.6)

—2V el cos(k/2) f(k) + (%o + 2A)g(k) = 0. (2.7)
The eigenvalue equation determined by (2.6} and {2.7) is

(g — 24)(%, + 2A) — (2V cos(k/2))* =0 (2.8)
with solutions

B3 (k) = £2[A% + (V cos(k/2))*]2. (2.9)

Thus, the eigenvectors of Hy become

o

lp(k))e = 2 ¥ (fa(k)|2m) + . (K)|2m + 1)) (2.10)

m=-x
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with the relation :
fo(k) = [2V cos(k/2) e 7(k/2) /(€ 5 (k) — 2A)] g (k). (2.11)

g.{k) can be determined by the normalization of the eigenvectors | ¢(k)}., which gives
g (k) = {1+ [2V cos(k/2)/( § (k) — 24) ]2} 2. (2.12)

From (2.9)-(2.12), it is easily shown that the following formulae hold:
|f= (B + |g=(k)|* =1 fi(R)f=(k) + gi(k)gs(k)=0  (2.13)
HeR)|@k)). = 8k - &) @) |@))s =0. (2.14)

3. Exact solutions of H for the case A > V'

Let eigenvector | 1) of H be of the form

)= [ ak @)oo, +50)190)-) @)

0

and using (1.3)—(1.5), we obtain the following equation for the amplitudes a(k) and b(k)

I
%[ k@)l + bR o))
1}

= [ k@5 wamlot. +$50bE)|®)-)

0
= eksa [ @k (al) Z mimml 9() . + b(8) S mlm¥im| (k). )
3] m m

(3.2)

where € is the energy belonging to H. By multiplying ,{g(k)| on both sides of (3.2), and
noticing that from (2.14), we have.

1
Ga(k) =&§ (k)a(k) = eEuaJ dk’ a(k’) 2, m (@ (k) | m)m| @ (k')) .
0 m

ur
— eEya [ dk' b’y S A (k) | mdom| p(K)) - (3.3)
0 m

Substituting (2.10) into (3.3), we find (see appendix A)
(d/dk)a(k) = i[(¥ + eaEy — € (k) /2eaElalk) — G, _(k)b(k) (3.4)

with

2V cos(k/2) d (2Vcos(k/2)). (3.5)

Similarly, by multiplying _{@ (k)| on both sides of (3.2), we get
(d/dk)b(k) = i[(€ + eaEy — €5 (k))/2eaEoblk) + G, _(k)a(k). (3.6)
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Noticing that from (2.9) € § () = ~% ; (k), and by introducing

a(k) = =0+ B0 A (k) B(k) = eilath =50 B(k) (3.7)
where.
_Eteaky SR S LT
W)=tk B =g jﬂ ak' &5 (k") (3.8)
Equations (3.4) and (3.6) reduce to
(d/dk)A(k) = —G .- (k) e " B(k) (3.9)
(d/dk)B(k) = G, _ (k) e®F& A(k). (3.10)
Equations (3.9) and (3.10) can be rewritten as
d Ay N Ak)
dk(B(k)) = —iG , _(k)[—sin(2B8(k))o, + cos(2ﬁ(k))ay}(8(k)) (3.11)
where o, and o, (as well as 0,, used below) are the Pauli matrices, whose explicit forms
are [9}
0 1 0 —i 1 0
g, = (1 0) o, = (i 0) g, = (0 _1). (3.12)
On introducing
(AW
R(k) = (B(k)) (3.13)
S(k) = X(k)o, + Y(k)a, (3.14)

X(k) = =G, (k) sin(2B(k)) Y(k) = G- (k) cos(2(k)) (3.15)
equation (3.11) reduces to
(d/dk)R(k) = —iS(k)R(k) (3.16)

or equivalently
&
R(k) = R(0) — if dk; S(k)R(k)). (3.17)
0

Noticing that from (3.14) and (3.15), by using the well-known properties of the Pauli
matrices, i.e., 0% = 0 = 07 = 1, 0,0, = i0,, 0,0, = io, and 6,0, = ig,, we find

|S(R)] = (X2 (k) + Y2(k))'* = | G- (K)]. (3.18)
Substituting (2.9) and (2.12) into (3.5), we have

o= () s+ (st
e G /s o) oo [+ Gt 1]

(3.19)
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As indicated in section 1, we are interested in the case of (V/A) < 1. This, because of
(3.19), makes

k
[ aks ste)RG) | < 1RO)] (3:20)
i
Therefore (3.17) can be solved by using PT. As a result, we obtain
R = 2 UoR(O) (3.21)
where
0
Uy =1 (3.22)

k k k
Uity =i [ ak [k [ dk 00k, - k)OGK ~ 3)
0 0 0

X ... Oy — k) S(k1)SCky) . . . SChm) (3.23)
B(k)—{l k>0 (3.24
o k<0. 24

It is easily shown that (see appendix B)
X(k]_kz..-km)+iY(k1k2...km)az ifm=2[

S(k)S(Ks) . . . S(ky ={
Uer)S(ka) - - - SChim) X(kiky . .. kYo, + Y(kiks. . ko, Em=20+1

(3.25)
X(klkz e km) = X(k1k2 PP km—l)X(km) + Y(klkz - km—l)Y(km) (m = 2)
- (3.26)
Y(kiks . . ) = X(kikes . . . K t)Y(k) — Y(kiky . . ) X(Ky) (2 2).
(3.27)
Defining
k k k
U@ (k, 0) = (—1)mf dk,f dk, . f ey O(k1 — K3)6(k; — ks)
0 Q 0
Xx... B(k2m—1 - kzm)X(kag [P kZm) (328)
k k k
e (&, 0)=(—1)mf dk,f dkz...f dhsy, By — loy)O(ks — k)
1] [ 0
X ... Oy — ko) Y(kiky . .. kpp) (3.29)
k k k
VBT, 0) = (<0 [k [ ks [ dhgen 86, - k)6 — k)
0 Q 0
X . Okyy — ks )X rKes -+ . Ky sy (3.30)
k k k
UPm+(k, 0) = (~1)m+1f dklf dkz...f hsmsr 60Ky — ka)Bky — k3)
] 0 Q¢
X .. Oy — Kame )Y Kikn -+ . Ky o) (3.31)

UD(k,0)=1 UP(k,0)=0 (3.32)
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we find

a6 -] o

2 U™k, 0)= 2 UP(k,0) +io, 2 UP™(k,0)

m=0 m=0 m=0
+ig, E Ugm*+D(k, 0) + io, E U@V (k, 0). (3.33)
m=0
From (3.7}, (3.8), (3.13) and (3.21), we have
a(k) - ek 0 .
(b(k)) =e U‘)(O ) W)) E U (k, 0)R(0) (3.34)
_ (AQ) _ (a(0)
R(0) = (3(0)) = (b(()))' (3.35)

Note that from (2.9)+2.12), €5 (k + 271) = 8§ (k), f-(k +27) = f.(k), g.(k + 2m) =
g+(k) and |@(k + 21)). = |@(k)).. Thus, we have a(0) = a(27) and b(0) = b(2x)
because of a(k)= ,{p(k)|y) and b(k) = {@(k)|y). This leads to the following

equation:
a(O)) wan(¢" 0 S o om (40)
=em(2.z)( )zy ( ) 3.36
(b(O) 0 eden/ 25T p) (3-36)
The eigenvalue equation determined by (3.36) is
e if(27) .
W0 ) B0 o

with solutions (see appendix C)

* = (2n — l)eak, = (eak,/m)e(27, 0) (n= mtcger) (3.38)
where
¢(2n,0) = cos“l(cos B(2x) 2 U@ (2, 0) — sin $(27) 2 U (2, 0)) (3.39)
m=0

Corresponding to €, the solutions for 2.(0) and 5..(0) determined by both (3.36)
and the normalization of the eigenvectors |y}, are

% (] — cos{a@. (2m) + B(27)) ﬁz‘, U (2n,0)

+ sin(a. (277) + B(2%)) 2 U@ 2, 0)) }m (3.40)
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b.(0) = ( %0 U (2x,0) +i 2 U2, 0)) "

m=0
(-]

X [e—ifd=(2n)+ﬂf2’=n - | 2 Ugm@n,0)+i X U2, 0))]@(0)
m=0

m={
(3.41)
where
@.(27) = [(% + eaEy)/eaE,]n. (3.42)
From (3.1), (3.4) and (3.35), we obtain the final results for the eigenvectors
2
W = dk @100, +b.0)l9(0)-) (3.43)
0
with
a.(k ‘ e 0 > a,(0
( 2 )) = e“*=(")( , ) > Uk, 0)( 2 )) (3.44)
b (k) 0 e/ 12 b.(0)
where
. (k) =[(8; + eaEy)/2eaE k. (3.45)
It is straightforward to check the orthogonality conditions, i.e.,
:(V’lu’): =1 A|y)z =0. (3.46)

4. Concluding remarks

It can be clearly seen from (3.38) that the energy spectrum for our model (1.3} is that of
two interspaced Stark ladders. This is consistent with many theoretical results about
the existence of Wannier—Stark localization in solids for a charged particle under the
influence of a uniform electric field [10-12].

What we find quite interesting is the fact that the value of (45 ~ % )/eaE, is an
even number, i.e., (3 — %%)/eaE; = 2(n — n'). In other words, the value of (8 —
€5 )/eaE, cannot be an odd number. This forbidden effect is different from the two-
band model of Fukuyama et af [13] where the value of (€ — % )/eaE, can be an even
or an odd number.

In principle, our results (3.38)—(3.46) can hold exactly for the case of (V/A) < 1.
However, this means that one needs to do an infinite number of integrals, which,
obviously, isimpossible. Therefore, in practice, we have to make further approximations
up to the required orders. For example, as the zero order of the pT, from (3.32) and
(3.39) we get

":3__‘,0 U@ (2, 0) = U®(2,0) = 1 ,Eo U@m(2x,0) = UM(2x,00=0.  (4.1)
This leads to

¢(27, 0) = B(2m) (4.2)
where

1o
B = 5 fo k%5 (k). (4.3)
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Substituting (2.9) into (4.3) and completing this integral yields
B(27) = —(4/eaEy)(A* + V2)'PE(x/2, y) " (4.4)

where E(/2, y) is the complete elliptic integral of the second kind [14], and y is the
modulus defined through

v =Vi/(A? + V) (4.5)
Substituting (4.2) and (4.4) into (3.38), we obtain the spectrum
B: = (2n ~ Deaky = (4/7)(A? + VIV E@/2, v). (4.6)

If we use the identity [15]

T N_ A g B T() 5 TOm—YTm+§) "
E(f”')'EF( BB SR o T D) m

(4.7)

where F and T are, respectively, the hypergeometric function and the gamma function,
the role of alternating site energies in the spectrum can be explicitly found from (4.5)-
(4.7}, whose notable character is the fact that the enhancement of chain disturbance will
give rise {0 an increase in the energy gap.

Another character for our general results (3.38)-(3.46) is that, compared to
Movaghar’s results [16] where the Stark regime, in semiconductor superlattice struc-
tures, will appear for greater values of the external field E,, our conclusion about the
existence of Wannier—Stark localization can occur for a quite large range of the values
of @ (1-100 A) and E, (0-10° V m™"}, because there is no special confinement to these
parameters in our model. In fact, the above typical values are in agreement with many
experimental results [13, 17-23].

Finally, we should like to indicate that since the eigenvectors for our model have
been obtained here, it is possible to calculate other physical quantities up to any order
of PT.
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Appendix A
Substituting (2.10) into (3.3}, we have

n
(& - BF (k))a(k) = <—eang dk" a(k’)
0
x X el =mamf L (k) F. (k') + (2m + 1)g % (k)g. (k)]
2r
— eaE, f dk’ b(k')
1]

x S e =0m[amf L (k)£ (k') + (2m + 1)gh (K)g- (k)]
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= 2eakyi | @k alle)(FLOOL, () + 83008, () S it om
1] m.

+ 2eaEy i f "k bR LRV + g2 (R)g-K) a_‘l_z il
0 m.

~ caky [ dk (alk)g(Rg. (k) + b(K)g (R (k) Z etk o
0 m

2 ,
=2eakoi | Ak’ a()(F1EF-(k) + g1 (00EK) 0k = k)
0

2 .
+2eaky i [ A BRN(FHOS () + g3 (Wg- () 37 80k = )
0

an
— eaEy f di’(a(k')g} (k)g. (k') + b(K")g % (k)g - (k))S(k — k')
0

—2eaByif 1) [ Ak (a(k)F, (K) + B () =m B0k = k)
\ 3k

) |
+ 2eaEy g () [ aK'(a(k)g. (K) + B(K)g (k) 3300k = k)
0

— eaEo(a(k)|g . (K)I* + b(k)g (k)g-(K)). (A1)

By successive integrations by parts for the first two integrals, and the use of the facts that
F-(0) = f.(27), g.(0) = g.(27), a(0) = a(2x) and b(0) = b(2x), we find that

(€ — 2§ (k))a(k) = —2eak, il f L (k)(d/dk) (a(k) f . (k) + b(k) f_(k))

+ gt (k)(d/dk)(a(k)g . (k) + b(k)g- (k)]

— eaEofa(k)|g. (k) * + b(k)gi (k)g- (k). (A2)
Using (2.13), equation (A2) becomes
(8 — 83 (k))a(k) = —2eaE, i(d/dk)a(k) — eaEo(a(k)|g. (k) + b(k)g%(K)g- (k)

— 2eaEq ia(k)[f 3 (k)(d/dk) f. (k) + g% (k)(d/dk)g .. (k)]

— 2eaEq (k) f 5 (k)(d/dk) f- (k) + g1 (k)(d/dk)g - (k). (A3)
Noticing that from (2.11) and (2.12), one has g 3 (k) = g. (k) and

d i e 9 2V cos(k/2)
R0 =11+ e L (ZEE R ), (at)

Therefore (A3) reduces to
(% — B (k))a(k) = —2eaE, i(d/dk)a(k) — eaEo(ak)gd (k) + b(k)g , (k)g- (K))

(2V cos(k/2))?
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_ 2V cos(k/2) d {2V cos(k/2)
—2eakq la(k)[m g+ (k) dk(‘@g(k] —2A 84+ (k))
8.0 58400 — 2000 600 ST 5, ()

k/2 d
< (P e ) + 8.0 -0 (A3)

Since from (2.9) and (2.12), we have

2V cos(k/2)\*1 _ (2V cos(k/2)? _
gi(k)[l * (W) ] =1 Gim-a@in-2a)_ - (A8
Therefore, the last two terms of (AS) can be derived as
2V cos(k/2) d {2V cos(k/2) d
_1df. 2V cos(k/)\* 1
‘EEE{“”*(")[H (%g(k)—m) ]} =0 (A7)

2V cos(k/2) d [2V cos(k/2) d
m&(@ a‘z(mg-(i‘)) + g4 (k) a&(k)

3 2V cos(k/2) d (2V cos(k/2)
=8+ (- gy " a (%a(k) = za)

(2V cos(k/2))? d 4
t @I —am@E; (o 28y E W 8- P T 8- W) gre- ()

B 2V cos(k/2) d 2V cos(%/2)
=8 (kg - (k) B5(k) —2A dk (%5(1:) - m)‘

Substituting (A6)-(AR) into (AS5), and using (2.13) again, we find
(% — 8§ (k))a(k) = —2eaE i(d/dk)a(k) — eaEqa(k)

2V cos(k/2) d (2V cos(k/2) )
ZI (k) — 24 0k \B; (k) — 20/

By defining G, ..(k) as given by (3.5), we finally obtain (3.4).

(A8)

— 2eaE, ib(k)g . (k)g - (k) (A9)

Appendix B

From (3.14) and by using the well-known properties of the Pauli matrices, i.e.,
o2 =0t = o? =1, 0,0, = i0,, 0,0, = i, and 0,0, = io,, We have

S(k1)S(hkz) = Xk )X (k2) + Yk )Y (k2) + i(X (k) ) Y(ky) — Y k)X (k2))o,
= X(k,k,) +1Y(k ky)o, (B1)
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with

Xk ky) = X (k)X (ky) + Y(k))Y (k) (B2)

Y(k ko) = X(k,)Y(ky) — Y(k)X(ks) (B3)
and
Sk )S(ky)S(ks) = (X(k1k2)X(k3) + Yk k2)Y (k3 ))o,

+ (X(k1k2)Y(ks) — Yk k) X(k3))o,

= X(kikoks)o, + Y(k kaoks)o, (B4)

with
X(kikoks) = X(k k) X(k3) + Yk ko) Y(ks) (BS)
Y(kikoks) = Xk kp)Y(ks) — Y(k\ k2)X(k3). (B6)

Similarly, by direct calculations, we arrive at (3.25}-(3.27).

Appendix C

Substituting (3.33) (taking k = 2u7) into (3.37), we get

g ~ia2m) _ g iaf2n) (cos B(2m) = U (2x,0) — sin f(27) 2 U™ (2, 0))

m=0 m=0

+ (,,,20 Uem (2x, 0))2 ; (éo Ugm 2z, 0))2

+ (i U@+ (2, 0))2 + (}éﬂ U@+ (2, 0))2 =0. (C1)

m=0
Note that from (3.36), we have

a(0) )

«@F + 1O = @@ @)

a(O))' ©2

= (a*(O)b*(O))(EO U2, 0)) (mZ:O U™ (2, 0)) (b(O)
When using (3.33) again, equation (C2) becomes

G@F + P = [( S vEme,0) + (3 open0)

* 2 * 2
(3 vemem,0) + (S vgmoew,0) (a@ + 16O,
m=0 m=0
(©)
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This gives
© 2 = 2 * 2
(E Ug™(2m, 0)) + (E U,Gml(zn,O)) + ( b US,Z"’*”(ZJI,O))
m=0 m=0 m=1{)
% 2
+ (2 U@™+N (2, o)) = 1. (C4)
m=0
Substituting (C4) into (C1), and introducing
cos ¢(2, 0) = cos B(2n) X UE™(2x,0) - sin f(2x) > U 2m) (2, 0) (C3)
m=0 =0
we obtain
expli((2m) 7 $(2,0))] = 1. (C6)
This leads to
a . (27) =2zn £ ¢(2x, 0} {n = integer) {Ch

where «.(2:) is given by (3.42). Substituting (3.42) into (C7), we arrive at the final
resuits (3.38).

References

[1] Kenkre V M and Reineker P 1982 Excitors Dynamics in Molecular Crysials and Aggregates ed G Hohler
(Berlin: Springer)
[2] Bilek O and Skala L 1986 Phys. Lett. 119A 300
[3} Tsu R and Dohler G 1975 Phys. Rev. B 12 680
[4] Robin P apd Muller M W 1986 PhAys, Rev. B 325222
[5] Patel J § and Hanson D M 1982 Chem. Phys. Leit. 89473
[6] PatelJ S and Hanson D M 1981 J. Chem. Phys. 755203
[7] Hanson D M 1980 Med. Cryst. Lig. Cryst. 57243
[8] Kovanis V I and Kenkre V M 1988 Phys, Letr. 130A 147
{9] Merzbacher E 1970 Quanium Mechanics (New York: Wiley) p 270
[10] Wannier G H 1969 Phys. Rev. 181 1364
[11} Emin D and Hart CF 1987 Phys. Rev. B 36 7353
[12] Hart CF and Emin D 1988 Phys. Rev. B 37 6100
[13] Fukuyama H, Bari R A acd Fogedby H C 1973 Phys. Rev. B 85579 .
[14} Byrd P F and Friedman M D 1971 Handbook of Elliptic Integrals for Engineers and Scientists (Betlin:
Springer) p 10
[15] Absamowitz M and Stegun 1 A 1966 Handbook of Mathematical Functions (Washington, DC: National
Bureau of Standards) chs 13,17
[16} Movaghar B 1987 Semicond. Sci. Technol. 2 185
[17] Maekawa § 1970 Phys. Rev. Lett. 24 1175
[18] Koss R W and Lambert L N 1972 Phys. Reo. B 51479
[19] Voisin P, Bleuse ], Bouche C, Gaillard §, Alibert C and Regreny A 1988 Phys. Rev. Lett. 61 1639
[20] Agulle-Rueda F, Mendez E E and Hong ] M 1988 Phys. Rep. B 38 12720
[21] Mendez E E, Agullo-Rueda F and Hong J M 1988 Phys. Rev. Let. 60 2426
[22] Leavitt R P and Little ] W 1990 Phys. Rev. B 415174
[23] Whittaker D M, Skolnick M S, Smith G W and Whitehouse C R 1990 Phys. Rev. B 42 3591



