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theory 

Zhao Xian-Geng 
Institute of Applied Physics and Computational Mathematics, PO Box 8039, Beijing 
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Abstract. The energy spectrum and the eigenvectors of a charged particle in a uniform 
electric field with alternating site energies are studied for infinite systems. For the case of 
large energy mismatch, exact solutions are presented by using perturbation theory, from 
which itisfoundthat thespectnunisthatoftwointerspacedStarkladders. Thecharacter of 
these Stark ladden is that the difference of the ratio of the energy and the field between two 
energies on a same rung is an even number. 

1. Introduction 

This paper addresses the energy spectrum and the eigenvectors of a charged particle 
hopping on an infinite linear chain under the action of a uniform electric field in the 
direction of the chain, and with the approximation of nearest-neighbour intersite overlap 
integrals V. The character of this model is such that the site energies alternate between 
the values E ? 2A (A > 0). Such a system is relevant to a variety of fields, including that 
of exciton states in molecular crystals [I, 21, electron localization in superlattices [3,4], 
and the localized properties of excitations in ferroelectric materials [5-71. The Hamil- 
tonian considered here is thus 

H = ’?.A 1 ( - l ) m  im)(ml+ V x  (Im)(m + 1 I + Im + l)(mI) - eEoa mlm)(ml 
m m m 

(1.1) 

where Im) represents a Wannier state localized on lattice site m, e is the charge on the 
particle, a is the lattice constant, and Eo is the external electric field. Here, V has been 
assumed to be positive for simplicity, and the off-diagonal elements of the position 
operator Bin  the Wannier basis have been neglected, i.e., we have assumed that 

dX‘ (m iX)(XleEo2iX’) (Xf  In) = eEoam6,,, . (1.2) f-1 
0953-8984/9~326321 + 12 $03.03.50 @ 1991 IOP Publishing Ltd 6021 



6022 Zhao Xian-Geng 

Equation (1.1) can be rewritten as 

H =  Ho + H ,  (1.3) 

He = -eEoa mlm)(ml. (1.5) 
m 

Here, H o  is the field-free Hamiltonian, whose probability self-propagators have been 
studied by Kovanis and Kenkre [SI. When the extemal field is present this model, in 
general, cannot be solved analytically. However, we find, for the case when the chain 
disturbance is large, i.e. for A %- V, the problem can be solved exactly by using per- 
turbation theory (FT). In this paper, we only consider this case. 

The rest of this paper is set out as follows. In section 2, we present our solutions to 
Ho in k-space. Then, by expressing the eigenvectors to (1.3) as a linear superposition of 
the field-free eigenvectors, the exact resultsfor the energyspectrum and theeigenvectors 
are obtained by using PT (section 3), from which it is found that the spectrum is that of 
two interspaced Stark ladders. Finally, concluding remarks are given in section 4. 

2. Explicit solutions for the field-free system ink space 

By expressing the eigenvector I a) of Ho as a linear superposition of Wannier states Im), 

lq) = C C,b) (2.1) 
m 

one obtains the following equations for the amplitudes C, as 

% o C k  = 2 A C h  + V ( C ~ + I  + C k - 1 )  (2.2) 
%oCzm+i = -2Ack+1 + V(Cht2 + C,) (2.3) 

cu. =f(k) ekm OSk<2JC (2.4) 

Ckt  = g ( k )  eh O S k i Z n  (2.5) 

where is the energy belonging to Ho.  These equations can be diagonalized by setting 

where k is the (dimensionless) wavevector. We get 

(%,, - 2A) f (k )  - 2Ve-'(k/2) cos(k/2)g(k) = 0 
-2Ve'@lz) cos (k /Z) f (k )  + (Z0 + 2A)g(k) = 0. 

(Eo - 2A)(%o + 28) - (ZVcos(k/Z))' = 0 

(2.6) 

(2.7) 

(2.8) 

The eigenvalue equation determined by (2.6) and (2.7) is 

with solutions 

% i ( k )  = *2[A2 + ( V c o ~ ( k / 2 ) ) ~ ] ~ / ~ ,  

Thus, the eigenvectors of Ho become 
r 
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with the relation 

f,(k) = [2Vcos(k/2)e-’(k/Z)/(%$(k) - 2A) ]g , (k ) .  

g * ( k )  = 11 + [ZVcos(k/Z)/(%,f(k) - ZA)]’}-*D. 

(2.11) 

(2.12) 

g+(k) can be determined by the normalization of the eigenvectors I p(k))=, which gives 

From (2.9)-(2.12), it is easily shown that the following formulae hold: 

If?(k)l* + lgt(k)12 = 1 f :(k)f= (k )  + g2 ( k k s  ( k )  = 0 (2.13) 

*+?wl9)(k’))i = W k  - k’)  2 ( ~ l ( k )  I q(k ‘ )  ): = 0. (2.14) 

3. Exact solutions of H for the case A %- V 

Let eigenvector I q) of H be of the form 

2n 

- e E , a l 0  ~ ‘ b ( k ’ ) ~ ~ . . . ( ~ ( k ) l m X m l ~ , ( k ’ ) ) - .  m (3.3) 

Substituting (2.10) into (3.3), we find (see appendiv A) 

(d/dk)a(k) = i[(% + eaEo - %,+(k)) /ZeaE~la(k)  - G+-(k)b(k) (3.4) 

with 

(3.5) 

Similarly, by multiplying _(@)I on both sides of (3.2), we get 

(d/dk)b(k) = i[(% .+ ea& - E o(k))/2eaEo]b(k) + G+_(k)a(k). (3.6) 



6024 Zhao Xian-Geng 

Noticing that from (2.9) ’% $ ( k )  = -’% 0 ( k ) ,  and by introducing 

b(k) &(4k)-P(k))B(k) (3.7) a(k) = e@tk)+P(k)) A(k) 

where 

k 
% + eaEo 

4 k ) =  2eaEo 

Equations (3.4) and (3.6) reduce to 

(d/&)A(k) = -G+_(k) e-2g(k) B(k) 
(d/&)B(k) = G+-(k)  ez@(k) A(k). 

Equations (3.9) and (3.10) can be rewritten as 

(3.9) 
(3.10) 

(3.11) 

where U, and 0; (as well as u2, used below) are the Pauli matrices, whose explicit forms 
=e [91 

O). (3.12) 
0 -1 

On introducing 

(3.13) 

S(k)  = X(k)u, + Y(k)uy (3.14) 

X(k)  = -G+-(k)sin(2/3(k)) Y(k)  = Gt-(k)cos(2P(k)) (3.15) 

equation (3.11) reduces to 
(d/dk)R(k) = -iS(k)R(k) 

or equivalently 
(3.16) 

k 
R(k) = R(0) - i 1 dk, S(k,)R(k,). (3.17) 

Noticing that from (3.14) and (3.15), by using the well-known properties of the Pauli 
matrices, i.e.. U:,= U: = U: = 1, u p y  = iu,, upz = io, and upx =ioy, we find 

(3.18) 

0 

IS(k)j = ( x ? ( k )  + Y2(k))’” = IG+-(k)l. 

Substituting (2.9) and (2.12) into ( 3 4 ,  we have 

x [[ 1 -  (; -cos- + (~cos;)z]”2{1 + + (;cos;)2]1’2]]. 

(3.19) 
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1. This, because o f  As indicated in section 1, we are interested in the case of (V /A)  
(3.19), makes 

l lokdkl S ( k , ) R ( k ) )  <IR(O)I (3.20) 

Therefore (3.17) can be solved by using PT. As a result, we obtain 
o/ 

R(k)  = Utb)R(O) (3.21) 
m=O 

where 
- 

(k.0) - 
U:& = ( - i ) ,  [ dk ,  I,” dk,  . . . I,” dk, B(k1 - kz)B(kz - k3) 

(3.24) 

It is easily shown that (see appendix B )  
X ( k l k z . .  . k,) t i Y ( k l k 2 . .  . k,)u, i f m  = 21 

X ( k , k ,  . . . k,)u, -k Y ( k l k z .  . . km)uY i f m  = 21 t I 
S(k l )S (k z ) .  . . S(km) = 

(3.25) 
X ( k l k 2 . .  . k,) = X ( k l k ,  . . . k,-l)X(k,) + Y(k,k , .  . . k,-,)Y(k,) (m 2 2) 

(3.26) 
Y(k1kz. . . k,) = X(k ik2 .  . . k,-i)Y(km) Y (k i k2 .  . . k,-l)X(k,) (m 3 2). 

(3.27) 
Defining 

UJ”)(k, 0) = (-1)”’ I dk, I dkz . . . Iok d k ,  B(k1 - k,)B(k2 - k,) 
k k 

0 0 

X . . . B(kh-1 - kz,)X(ktk,. . . k,) (3.28) 
k k k 

U$h)(k,O) = (-I), I dk ,  I dk, . . . I, dk,  B(k1 - kz)6’(k, - k 3 )  
0 0 

x . . . B(k,-, k,,)Y(k,k,. . . k,) (3.29) 
k k 

@“+’)(k,O) = (-I)“‘+’ I dk1 I dkz . . . I,” dk2m+l B(kl - kz)B(kz - k3)  
0 0 

X . . . B(k, - k,+j)X(klkz. . . k h + l )  (3.30) 
k k k 

U$,+’)(k,O) = (-I),+’ I dk1 I dk,.. . I, d k k + l  B(kl - kz)B(k2 - k,) 
0 0 

X . . . B(k, - k,+,)Y(klk,. . . k,+l) (3.31) 

Uio)(k, 0) = 1 U$?)(k, 0 )  = 0 (3.32) 
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we find 

m=O m=O 

From (3.7), (3.8). (3.13) and (3.21), we have 

(3.33) 

(3.34) 

(3.35) 

Note that from (2.9)-@12), %:(k + ZR) = %i(k) , f+ (k+ZR)  =ft(k), g+(k + ZR) = 
g , (k )  and Iq(k + %)), = ( q ( k ) ) ? .  Thus, we have a(0) = a(2n) and b(0) = b(2n) 
because of a(k)  = + ( q ( k ) l W )  and b(k) = _(q(k) lW) .  This leads to the following 
equation: 

The eigenvalue equation determined by (3.36) is 

(3.36) 

(3.37) 

with solutions (see appendix C) 

% p = (2n - I)eaEo (eaEo/n)q4(2n, 0) (n =integer) (3.38) 

where 

+(2n,0) = cos-l(cosp(2z) 5 uib)(2n, 0) - s i n p ( h )  2 ui")(b, 0)). (3.39) 

Corresponding to %:, the solutions for a,(O) and b,(O) determined by both (3.36) 

m. 

m=O m=O 

and the normalization of the eigenvectors I W)= are 

(3.40) 



(3.41) 
where 

a= (h) = [(8 f + eaEo)/eaEo]n. (3.42) 

From (3.1), (3.4) and (3.39, we obtain the final resultsfor the eigenvectors 
h 

I*)+ =I dk(a=(k)Iv(k))+ + b = ( W I v W - )  (3.43) 
0 

with 

where 
a,(k) = [(’%: + eaEo)/2eaEo]k. 

*(VlV)t  = 1 

It is straightforward to check the orthogonality conditions, i.e., 

*(VlV)? = 0. 

(3.45) 

(3.46) 

4. Concluding remarks 

It can be clearly seen from (3.38) that the energy spectrum for our model (1.3) is that of 
two interspaced Stark ladders. This is consistent with many theoretical results about 
the existence of Wannier-Stark localization in solids for a charged particle under the 
influence of a uniform electric field [10-12]. 

What we find quite interesting is the fact that the value of (%: - 8$)/eaEo is an 
even number, i.e., (’%: - 8f , ) /eaEo = 2(n - n‘).  In other words, the value of (8; - 
‘%5)/eaEo cannot be an odd number. This forbidden effect is different from the two- 
band model of Fukuyama el a1 [ 131 where the value of (8 f - ’% :,)/eaEo can be an even 
or an odd number. 

In principle, our results (3.38)-(3.46) can hold exactly for the case of (V/A) 1. 
However, this means that one needs to do an infinite number of integrals, which, 
obviously, is impossible. Therefore, in practice, we have to make further approximations 
up to the required orders. For example, as the zero order of the m, from (3.32) and 
(3.39) we get 

D) ca 

u p ( h ,  0) = uy(2n, 0) = 1 U$?”)(Zn, 0) = Ui0)(2n, 0) = 0. (4.1) 
l l l = O  m=O 

This leads to 

W n ,  0) = P(2n) (4.2) 
where 

(4.3) 
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Substituting (2.9) into (4.3) and completing this integral yields 

f3(Zn) = -(4/eaEo)(A2 + V2)'/2E(~/2, y )  " (4.4) 

where E(n/2, y )  is the complete elliptic integral of the second kind [14], and y is the 
modulus defined through 

y 2  = V2/(A2 + V'). 

%f = (2n - l)eaEo 2 (4/n)(A2 + V2)@ E(z/2, y ) .  

(4.5) 

( 4 4  

Substituting (4.2) and (4.4) into (3.38), we obtain the spectrum 

If we use the identity [U] 

where F and r are, respectively, the hypergeometric function and the gamma function, 
the role of alternating site energies in the spectrum can be explicitly found from (4.5)- 
(4.7), whose notable character is the fact that the enhancement of chain disturbance will 
give rise to an increase in the energy gap. 

Another character for our general results (3.38)-(3.46) is that, compared to 
Movaghar's results [I61 where the Stark regime, in semiconductor superlattice struc- 
tures, will appear for greater values of the external field Eo, our conclusion about the 
existence of WannierStark localization can occur for a quite large range of the values 
of a (1-100 A) and Eo (0-108 V m-'), because there is no special confinement to these 
parameters in our model. I n  fact, the above typical values are in agreement with many 
experimental results [13,17-231. 

Finally, we should like to indicate that since the eigenvectors for our model have 
been obtained here, it is possible to calculate other physical quantities up to any order 
of PT. 
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Appendix A 

Substituting (2.10) into (3.3), we have 

(8 - %J(k))a(k) = ,-eaE dk'a(k') 
0 fob 
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ZVcos(k/Z) 
- 2eaEo ia(k)[% $(k) - 2A 

+ g + ( k ) z g + ( k ) ]  -2eaEoiW)[% $(k) - 2A 
d 2V cos(k/2) d 

g+(k) Z 

(‘45) 
2V cos(k/2) 
%O(k) - 2A 

Since from (2.9) and (2.12). we have 

( 2 V w ~ ( k / 2 ) ~  
- -1. (A6) g$(k)[l + ( ~ ~ ~ 0 ~ ~ 2 ) ) * ]  + k -2A = 1 (%$(k) - 2A)(%,(k) - 2A)- 

Therefore, the last two terms of (A5) can be derived as 

2Vcos(k/2) 
%of(k) - 2A 

=--[g:(k)[l+ I d  (~ws(k’2’)2])=0 
2 dk i (k)  - 2A 

2V cos(k/2) d 
%;(k) - 2A 

- 2Vws(k/2) d 2Vcos(k/2) 
-g+(k)g-(k)%$(k) -ZAdk(%,(k)-ZA 

g-(k)) + g (k) z g -  (k) 

d (2V cos(k/2))’ d + (%$(k) - 2A)(%,(k) - 2A) g+(k)$-(k) + g + ( k ) z g - ( k )  

(-48) 
- 2Vcos(k/2) d ZVcos(kJ2) 
-g+(k)g-(k)%l(k) -2Adk(%ij(k) -2A 

Substituting (A6)-(A8) into (M), and using (2.13) again, we find 

(5% - 5%: (k))a(k) = -2eaEo i(d/dk)a(k) - eaEoa(k) 

(-4% 
2Vms(k/2) d 2Vcos(k/2) 

- 2 e a ~ o  ib(k)g+(k)g-(k)%t(k) - 2AZ(%i(k)  - 2A 

By defining C , - ( k )  as given by (3.5), we finally obtain (3.4). 
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Appendix C 

Substituting (3.33) (taking k = Zn) into (3.37), we get 

2 (c 

+ (i m=O U$")(2n,0)j2 + (I: *=0 U$?qZX,0)j 

Note that from (3.36), we have 

When using (3.33) again, equation (CZ) becomes 
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This gives 

Substituting (C4) into (Cl), and introducing 
z T 

cos @(~n, 0) = cosp(2nj u$”)(z~, 0) - sinP(2zj L: u ~ Y ( z ~ ,  0) (C5j 
m=O m=0 

we obtain 

exp[i(cu(k) i @(2n, 0))] = 1. 

cu= (ZZ) = h n  * @(k, 0) 

(C6) 

(0) 

This leads to 

(n = integer) 
where ( u l ( h )  is given by (3.42). Substituting (3.42) into (CY), we arrive at the final 
results (3.38). 
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